
Therefore, in conclusion it can be emphasized that a study of the instantaneous temper- 
ature field displayed the significance of temperature fluctuations in the separation domain, 
especially for low degrees of stream compression, which is not always detected successfully 
in measurements of the average characteristics. Moreover, by studying the holographic inter- 
ferograms, the fluctuations in the coordinates of points of boundary layer separation and 
the size of the circulation zone can be determined with high accuracy, which yields a more 
complete representation of the flow around bodies. 

NOTATION 

T, temperature; n, water refractive index; ~, heat elimination coefficient; qt, thermal 
flux; t w, temperature of the wall outer surface; fin, temperature of the inner surface of 
the ebonite cylinder; Nu, Nusselt number; Re = Ud/v, Reynolds number; U, free-stream velocity; 
d, cylinder diameter; D, channel width; lw, wall heat conductivity; 0 ~ angle measured down- 
stream from the cylinder frontal point; s boundary layer thickness; L, wall thickness of 
the outer cylinder; ,, distance from the cylinder surface along its normal. 
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COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION OF NONSTATIONARY HEAT 

TRANSFER AT A CRITICAL POINT 

G. B. Zhestkov UDC 526.244 

Similarity criteria are derived for the conjugate problem of nonstationary 
heat transfer, and the behavior of the heat transfer coefficient with a sharp 
change in the boundary conditions is studied. 

Heat transfer in modern aircraft and rocket motors often occurs under nonstationaly 
conditions. At the present time the accuracy with which the nonstationary temperature and 
thermal-stress fields in structures is determined is limited primarily by the accuracy of 
the boundary conditions, in particular, in the form of nonstationary heat-transfer coeffi- 
cients. The fact that the heat-transfer coefficient is time-dependent when the conditions 
of heat transfer change sharply was confirmed experimentally in [i, 2]. In [3] similarity 
criteria characterizing the rate of change of the temperature of the wall were introduced 
and criterional dependences making it possible to calculate the nonstationary heat-transfer 
coefficient were derived. It follows from the estimates of [4] that for bodies in a gas 
flow the period of time during which the nonstationary heat-transfer coefficient differs 
from the corresponding stationary value under conditions of large Reynolds numbers Re > 104- 
l0 s does not exceed hundredths of a second. In [5, 6], however, it was found that this time 
is equal to 3-5 sec, the maximum excess is a factor of 2-3, and neglecting the time-depen- 
dence of the heat-transfer coefficient leads to significant errors in the calculation of the 
temperature of the wall. The present investigation was performed in order to determine more 
accurately the time dependence of the heat-transfer coefficient accompanying a change in the 
conditions of heat transfer. 
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We shall study a flow in a neighborhood of the bow critical point of a blunt body. We 
introduce the velocities u I and u1~, which are related with the longitudinal component of 
the velocity in the boundary layer and the external flow by the relations 

u=xu~(t, x, ~; u~=xm~(t ,  ~. ( 1 )  

We shall use the following dimensionless variables: 

~ ; V D =  V d at |  ; PD= Pd~|  UlD = Uld/Ul~; gD = gd 9~ui~ 

2 2 tD =/d/UI~; TD = TdT=o; PD = PdP.oul=D ; PD= ~P=o. 

In the indicated dimensionless variables in a neighborhood of the bow critical point at x = 
0 the system of boundary-layer equations, describing the flat laminar nonstationary motion 
of a compressible gas, with the corresponding initial and boundary conditions as well as the 
coupling conditions can be written in the following form (the index d is dropped): 

Op + 0 ov = o; 
0----'t-- ''}- Oul 0~t 

O/~ 1 a//1 O O/~ 1 OU 1 

Og Og Og Ot = ' 

OT OT 0 ~ OT _}_ (] 
-07  + ov . . . . .  I) Mg oP 

Oy Oy Pr Oy Ot 

(2) 

1 
P = .-----7- 9T; 

IMo 

r (o ,  y) = To(y); u(O, y) = Uo; 

y---~ oo, T = T~ (t); P = P~ (t); u = u~ (t); 

y = O, OT~ _ 0 ;  
0y 

= A F p:ul____..__~ . T~ = T; y 
~1,~, ' 

O < y < A V  p~u~.. ~ ; (pc)~ - -  

~,w OTto OT 
Oy ---O-y; u = v =  0; 

or =l o zorn, 
at Pr Oy Oy 

(3) 

(4) 

(5) 

(6) 

We shall study the important practical case of a thin wall, when the temperature drop 
in the wall is negligibly small. Integrating Eq. (6) using Eq. (5) we obtain 

o r  1 OT. 1 /  P~lll~ Pr. 
a--F = --K a-}-' K = (pc)~ a , ~ (7) 

If the body in the flow is a circular cylinder with diameter D, then, as follows from the 
theory of potential flow around a body (for example, [7]), 

u~= = 4U=/D and K ~ -  2(9c)~ ~ __A - I / ~ P r ;  Re p=U=D 
D ~= 

Let us assume that the flow is made nonstationary by a sharp change in the conditions of the 
external flow around the body (3) or the temperature of the wall. In this case both the de- 
gree of coupling of the problem and the degree of nonstationariness will be determined by 
the paran~e~er K. As K + ~ the problem becomes uncoupled, and the time of the nonstationary 
process is determined by the rate at which disturbances build up in the boundary layer; for 
K ~ i the nonstationary nature of the problem is related with the rate of change of the tem- 
perature of the wall. The similarity parameter K depends on the physical properties of the 
body and the medium flowing around it, the thickness of the wall, the radius of curvature, 
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and Reynolds number. For low flow velocities, as shown in [2], the heat transfer coeffi- 
cient is different from its stationary value throughout the entire nonstationary process. 
Under otherwise equal conditions, owing to the difference in the densities the similarity 
parameter K for flow of water around bodies (p = i000 kg/m 3) will be approximately three 
orders of magnitude smaller than in the case of flow of air (p = 1.2 kg/mS), so that in the 
case of a body in a water flow heat transfer is stabilized more slowly. 

The solution of the system of boundary-layer equations (2) with the corresponding ini- 
tial and boundary conditions and the coupling condition (7) was found numerically with the 
help of an implicit difference scheme, described in detail in [8]. With the help of the 
transformation of variables T = t and q = y/6 the equations can be written in the coordinates 
of the boundary layer in the standard manner [P(t) = const]: 

0 0cI) acI) 
. F ~ -  - -  D ~  - -  

on o~l aq 

O = T ,  ul; F ~ = ~ ;  F T -  

S T = O; Su 1 = 6 2 

8 z OCI) 3 v  
: - T  o-T + s . ;  5 n  = so; 

~x ; D~ : D r =  v6  ~t6 
Pr T 

T T .  & ~ ) ' 

O6 

& (8) 

S~=_ 6u~ ~ 60T n 06 OT 

T T ~ Or T z Or On 

The convective and diffusion terms are written in the finite-difference form with the 
help of the hybrid notation [9] and the time derivatives are written in the standard manner: 

O~ A~ 

where i enumerates the time step. In practice the calculation is performed as follows. As- 
sume that the solution is obtained at the i-th time step; this solution is used as the ini- 
tial distribution for carrying out the iteration cycle, consisting of successive calcu]ation 
of the system of equations (8). The first two equations are solved with the help of the dif- 
ference factorization method. The problem is assumed to be solved, if for all points the 
condition of convergence of the iteration process 

II T~ 
T~_ ~ < ~ ,  0 < / < N ,  (9)  

where k is the number of the iteration, is satisfied. After two to three iterations a~e per- 
formed the condition is checked at the boundary of the boundary layer 

](T N - -  T N _ I ) / ( T  N - -  To)] < q .  ( 1 0 )  

If this condition is not satisfied, then the thickness of the boundary layer is increased 
and the calculation is continued until the conditions (9) and (i0) are satisfied. The time 
step was chosen so that the increment to the boundary layer would not be very large. 

We shall study heat transfer between a thin-walled steel cylinder 0.04 m in diameter 
with a wall thickness of 0.001 m and with water flowing around it in the transverse direc- 
tion. We shall assume that the thermophysical properties of the water do not depend on the 
temperature, and Pr = 5. To perform the calculations the equation of state must be elimi- 
nated from the system of equations (2) and we must set p = const. A test calculation of the 
velocity profiles with a steady flow on a nonuniform computational grid with 50 cells showed 
~that with accuracy up to the third decimal point the solution obtained agrees with the exact 
solution of the boundary-layer equations [7]. Figure 1 shows the distribution of the rela ~ 
tire increase of the Nuesselt number as a function of the running time of the nonstationary 
heating (cooling) process of the wall for different Reynolds numbers. One can see that 
initially the nonstationary Nusselt number is always much greater than its stationary value, 
and the period of time during which this excess is significant rapidly decreases as the Ray- 
holds number increases. In practical calculations the heat-transfer coefficient can be re- 
garded as constant and equal to its stationary value already for Re >103 . 
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Fig. I. Relative increase in the Nusselt number Nu = 
Nunons/Nus Versus the time x, sec, for a cylinder in a 
water flow: i) Re = i00; 2) i000; 3) i0,000. 

Fig. 2. Coefficient A in the formula Nu = AV~ as a 
function of the temperature factor at the critical point 
for Pr = i. 

For air flowing around a cylinder of the same type the viscosity was approximated by 
Sutherland's formula 

~/~o = (TIT.o )a/2 T| q-- C T ff-C ' C =  110 K. 

The dependence of the heat-transfer coefficient on the temperature factor under the condi- 
tions of steady flow and T~ ~ = 300 K is presented in Fig. 2. For T w = 4 the heat-transfer 

coefficient is approximately 20% higher than its value at T w = i. Because the density of 
air is low, heat transfer is stabilized more rapidly than in the case of the water flow. 
Thus, when the wall temperature increases abruptly the time period during which the nonsta- 
tionary heat-transfer coefficient is at least 1.5 times greater than its stationary value is 
equal to 0.i sec for Re = 102 and 0.002 sec for Re = 104 . 

Experimental investigations of the effect of the thermal nonstationariness on the heat- 
transfer coefficient were performed on a high-temperature stand in regimes in which the tem- 
perature dropped from Tg = 1200 K to Tg = 350 K. In the model studied - a thin-walled cyl- 
inder 0.04 m in diameter, 0.06 m long, and 0.001 m thick - a groove 0.0005 m deep and 0.012m 
wide was made in the transverse section. Thus, in one experiment we were able to study the 
time dependence of the heat-transfer coefficient for two wall thicknesses - 0.001 and 0.0005 
m. The temperature of the gas was measured with a two-junction chromel-alume! thermocouple 
with butt-welded junctions 0.0003 and 0.0005 m in diameter. The true gas temperature was 
determined by extrapolating the indications to zero diameter of the thermoelectrode. The 
heat-transfer coefficient was determined by an indirect method, based on measurement of the 
temperature of the inner thermally insulated surface of the wall [I0]. The temperature of 
the inner surface of the model was measured at 18 points with chromel-alumel thermocouples 
0.2 mm in diameter, whose hot junctions were first flattened and then point-welded to the 
inner surface of the model, and the heat-transfer coefficient was calculated using the formu- 
la 

Aa=, I 

As is well known, for Bi < 0,i the heat-transfer coefficient can be calculated using only 
the first term in the expansion (the so-called thin-body method): 

/ 
rz = - -  pcA / ( T w - -  Tg). 

O~ j 
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Fig. 3. Heat-transfer coefficient ~ [in W/(m2"deg)] as 
a function of time �9 (in sec) of the nonstationary pro- 
cess with Re = 4"105: the measurements were performed 
with a wall thickness of 0.0005 m (i) and 0.001 m (2); 
the dashed line corresponds to a calculation performed 
with the gas temperature shifted relative to the measured 
value by 0.3 sec. 

Fig. 4. Nusselt's number versus Reynolds number: the 
dots are the experimental points and the dashed line shows 
the theoretical dependence Nu = 1.04. R~e. 

The method presented above has the drawback that is impossible to determine accurately T h 
and ~ initially, when the first derivatives of Th(Fo) are close to zero, while the higher 
order derivatives are large and make a significant contribution to the sum in spite of the 
low values of the coefficients multiplying them. Estimates showed that for the number;~ Bi ~ 
0.01-0.05 obtained in the work the critical dimensionless time Fo*, prior to which the solu- 
tion cannot be reconstructed, is Fo* ~ 0.5 or in physical units T* ~ 0.12 sec. 

The use of an automated system for acquiring and processing the experimental data made 
it possible to increase substantially the accuracy of the secondary processing. The indica- 
tions of the thermocouples were amplified by a block of amplifiers and recorded on a 12-chan- 
nel tape recorder. The experimental results were processed after the experiment ended and 
the processing included a number of stages: writing of the primary experimental data in a 
file in computer memory, digital filtering of the signal, secondary processing, and graphing 
of the results obtained. All programs, except for the secondary-processing program, w~re 
standard. Figure 3 shows the typical time dependences of the heat-transfer coefficienn, ob- 
tained at the critical point. One can see that the heat-transfer coefficient increase;~ 
sharply in the first second of the nonstationary process; this is explained by the finLte 
time constant of the air thermocouple. If the results on the gas temperature, shifted rela- 
tive to the measured temperature by 0.3 sec, are analyzed, then the sharp overshoot in the 
dependence of the heat-transfer coefficient vanishes. The general tendency for the heat- 
transfer coefficient to decrease with time can be explained by the effect of the temperature 
factor. This is explained by the fact that the heat-transfer coefficient measured on a thin 
wall (& = 0.0005 m) is lower than the analogous coefficient measured on a thicker wall (A = 
0.001 m). Figure 4 shows the dependence of the Nusselt number, measured with a temperature 
factor close to unity, on the Reynolds number. The data are in good agreement with th~ theo- 
retical dependence Nu = 1.04 R~e. 

In [5] it was found in a study of heat transfer on the bow arc of a circular cylinder 
with an angle of 120 ~ that for analogous values of the coefficient of nonstationarines=; K* = 

aTw~ ~ the nonstationary heat-transfer coefficient is 40 to 60% higher than its 
1 

T~ a~ cpgp~ 

stationary value. Apparently, because of the small geometric dimensions of the model (D = 
0.006 mm, A = 0.001 mm) the flow of heat was significant. Initially, when the difference of 
the temperatures between the air and the wall was much greater than the difference of the 
temperatures of the cylinder wall, the heat-transfer coefficient at the critical point could 
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be calculated from the indications of a thermocouple placed at the critical point of the cyl- 
inder. As the model cools (or is heated) the contribution of heat flow to the nonstationary 
process increases and some average heat-transfer coefficient over the arc of a circle, lower 
than the heat-transfer coefficient at the critical point, can be reconstructed from the indi- 
cations of the thermocouple placed at the critical point. This is why a stationary depen- 
dence was obtained in [5] for the Nusselt number averaged over the arc of a circle Nu = 

0. 635 RV~e. 

NOTATION 

x and y, axes of a Cartesian coordinate system; t, time; u and v, longitudinal and 
transverse components of the velocity; p, density; P, pressure; T, temperature; ~, coeffi- 
cient of viscosity; D, diameter of the cylinder; A, thickness of the wall; k, thermal con- 
ductivity; cp, heat capacity at constant pressure; g, acceleration of gravity; Re, Reynolds 
number; Pr, Prandtl's number; Nu, Nusselt's number; Bi, Blot's number; Fo, Fourier's number. 
Indices: ~, potential flow; 0, initial conditions; w, wall; g, gas. 
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